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Artificial Intelligence (AI) holds immense potential to support global efforts to reduce environmental 

impact by optimizing energy use, enhancing resource management, and improving climate modeling 

and prediction1. However, the accelerated rise of generative AI, particularly Large Language Models 

(LLMs), has brought new and urgent resource challenges. The exponential growth in computational 

power needed to run these models is placing increasing strain on global energy systems, water 

resources, and critical minerals, raising concerns about environmental sustainability, equitable access, 

and competition over limited resources. 

Achieving ecological resilience in generative AI is not solely a matter of reducing energy consumption, 

it is about unlocking broader opportunities, expanding equitable access, and enabling scalable, 

impactful innovation. A fundamental shift toward AI systems that are “clean by design,” with energy 

and resource efficiency integrated from the outset, is essential. This requires developing models that 

are not only high-performing but also lighter, more efficient, and environmentally sustainable, 

particularly as generative AI becomes a foundational layer of our digital infrastructure. Embracing 

energy- and resource-efficient AI is key to ensuring that the digital transformation advances in a way 

that is both inclusive and ecologically responsible, capable of scaling across diverse global contexts. 

To turn this vision into reality, addressing generative AI’s sustainability challenges demands sustained 

commitment and collective action. Policymakers, industry leaders, and the scientific community must 

prioritize the development of AI systems that are both energy-efficient and accessible, particularly in 

low-resource contexts. This report offers three key recommendations to support that shift: (a) 

mobilize public and private investment, along with strategic partnerships, to drive the development 

and adoption of clean by design AI systems that embed efficiency from the outset; (b) create 

incentives and standards, such as sustainability labels and green procurement criteria, that encourage 

transparency and promote eco-conscious design and usage across the AI ecosystem; and (c) enhance 

AI literacy to build critical awareness of generative AI’s environmental footprint and foster more 

intentional and conscious engagement.          

Through a combination of original experiments and data insights, this report illustrates how practical 

techniques can help translate that vision into action. Methods such as quantization and prompt 

optimization reduced the energy consumption of large language models by up to 75% without 

compromising accuracy. Moreover, in tasks that are specialized and repetitive, such as translation or 

summarization, replacing a large general-purpose model with smaller, task-specific models led to 
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energy reductions of up to 90%, while maintaining strong performance. These findings offer a tangible, 

scalable pathway toward a smarter, more accessible, and more resource-efficient AI future.  

UNESCO’s commitment to advancing the right to information, equitable access to knowledge, and 

ethical digital transformation underpins this report. As generative AI becomes a foundational layer of 

digital infrastructure, it is essential to ensure that its development supports sustainability, inclusion, 

and the public interest. This report provides evidence-based insights into how energy- and resource-

efficient AI can help achieve these goals, especially in low-resource settings.  

It aligns with UNESCO’s broader efforts to strengthen information integrity, promote open and 

inclusive digital ecosystems, and support countries in navigating emerging technologies in line with 

human rights and environmental priorities. It also contributes to global initiatives such as the Global 

Roadmap on Information as a Public Good in the Face of the Environmental Crisis and the Global 

Initiative on Information Integrity on Climate Change, which highlight the need to combat 

disinformation, ensure access to reliable environmental data, and empower citizens and media with 

the knowledge and tools they need.                       

By embedding sustainability and transparency into AI systems, this report supports a wider vision: one 

where digital transformation is not only innovative, but also inclusive, rights-affirming, and 

environmentally aligned. 

 

 

 

1. The rapid expansion and widespread adoption of mainstream generative AI technologies is 

placing growing pressure on global energy and resource systems, raising serious concerns about 

long-term environmental sustainability and resource efficiency. 

Training state-of-the-art large language models (LLMs) and general-purpose models consumes 

approximately 50 GWh of electricity, comparable to the annual electricity use of some developing 

countries2. Even more alarming is the energy footprint of LLM model inference, the energy consumed 

when users interact and prompt with LLMs, which grows exponentially as generative AI tools become 

embedded in everyday life.  

To illustrate the scale of energy use, let us consider ChatGPT, one of the most popular large language 

models in the world, and as of mid-2025, the fifth-most visited website in the world, ranking just after 

Instagram and ahead of X3. While ChatGPT is a proprietary, closed-source model, publicly available 

estimates offer insight into its energy demands. As of June 2025, ChatGPT receives approximately 1 

billion queries daily, each using around 0.34 Wh of electricity, about what it takes to power a high-

efficiency LED lightbulb for a few minutes, according to OpenAI CEO Sam Altman4.  That adds up to 

roughly 310 GWh per year, which is comparable to the annual electricity consumption of over 3 million 

people in Ethiopia, where average per-capita use is around 96 kWh/year5.  

Data centers, or AI factories, where AI models are developed and implemented, are the driving force 

behind the environmental impact of AI6. Compute demand by AI is doubling every 100 days7, driving 

a proportional increase in energy use. The International Energy Agency (IEA) estimated that data 
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center electricity consumption has grown by around 12% per year since 2017, more than four times 

faster than the rate of total electricity consumption8.  

Beyond electricity, the water usage associated with training and running LLMs adds another layer to 

the environmental burden. Data centers that support AI operations require vast quantities of water 

for cooling, and significantly, much of this is fresh, potable water, further intensifying global water 

stress. Many of these buildings use millions of gallons of water (often fresh, potable water) per day in 

their cooling operations9.  

Projections indicate that the global water consumption of major AI players like Google, Microsoft, and 

Meta could triple by 2027. This isn’t limited to cooling alone: water is also extensively used in the 

manufacturing and construction of AI hardware, particularly for cooling electronic components during 

production. AI demand is expected to consume between 4.2 and 6.6 billion cubic meters of water by 

2027, surpassing Denmark’s total annual water withdrawal of 4–6 billion cubic meters10.  

These demands are not just an environmental issue, they are a resource allocation challenge. In low-

resource settings, where reliable energy and water are already scarce, the expansion of energy-

intensive AI infrastructure competes directly with critical societal needs.  

2. The current state of Generative AI development and deployment could deepen digital divides, 

excluding the same communities most at risk from environmental harm.   

The benefits of generative AI are disproportionately accessible to those in regions with advanced 

digital infrastructure (e.g. high-performance computing) where most of AI development and adoption 

are taking place. In contrast, an estimated 2.6 billion people are offline in 2025, accounting for 32 per 

cent of the world's population11. Out of this total, 1.8 billion people live in rural areas. In Africa, only 

5% of AI talent has access to adequate computing resources12, and only a handful of nations in the 

region host supercomputing infrastructure for generative AI applications. Data center investments, 

while increasing, still represent less than 1-1.5% of global capacity13, and their expansion risks 

exacerbating water scarcity and energy inequality, particularly in drought-prone or energy-

constrained areas. In resource-constrained settings, the reliance on fossil fuels and limited renewable  
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energy options to power AI infrastructure further deepens environmental and social disparities, 

making  resource-efficient AI practices an even greater imperative. 

3. Addressing AI interactions, also known as inference, is key for building smarter, resource-

efficient generative AI.  

A paradigm shift is urgently needed in how we build and scale generative AI. The current trajectory, 

focused on ever-larger, more complex models, is creating barriers to innovation and accessibility, 

particularly in low-resource contexts. It is also driving up computing costs, slowing performance, and 

increasing emissions from energy-hungry infrastructure. 

To reverse this trend, we must rethink AI systems through the lens of “clean by design”, embedding 

energy and resource efficiency into the architecture of AI from the start. Sustainability must shift from 

an add-on to a foundational design principle, driving the creation of models that are leaner, faster, 

and more accessible by default. 

This is especially urgent when it comes to inference, the stage when people use generative AI tools in 

real time. While training large models consumes massive power, it is now the billions of daily user 

prompts that make up the bulk of AI’s environmental impact. Despite the urgency of the issue, 

practical solutions to reduce the energy consumption of AI inference are only just beginning as the 

field is evolving.  

This report introduces three practical approaches to advancing resource-efficiency at the inference 

level, showing how small innovative solutions can deliver big environmental and accessibility gains: 

a. Shrink the model: Reducing the size of models (compression) brings efficiency in bits 

and bytes. Model compression techniques like quantization can achieve energy savings 

of up to 44% by reducing computational complexity. It also reduces the cost of running 

LLMs by shrinking their size and making them faster. 

b. Say more with less: Shorter prompts and responses lead to smart saving. Streamlining 

input queries and response lengths can reduce energy use by over 50%. Shortening 

inputs and outputs also reduces cost of running LLMs. 

c. Small is powerful: Small language models (SLMs) can be powerhouses: Adopting 

smaller, fine-tuned models for specific applications can deliver energy savings of up to 

90% while maintaining high accuracy. In addition to energy efficiency, small models are 

more accessible in low-resource environments with limited connectivity, offer faster 

response times, and are cost-effective.  

To address the urgent need for resource-efficient and cleaner generative AI, the report 

recommends:  

a. Mobilize innovation to advance resource-efficient AI systems. Accelerate the development 

and deployment of “clean by design” AI through bold public and private investment, 

strategic partnerships, and multi-stakeholder collaboration. This requires channeling support 

toward innovative approaches that embed energy and resource efficiency into AI systems 

from the outset, particularly at the inference stage where everyday energy use occurs. 

Dedicated research consortia, innovation hubs, and accelerators focused on sustainable AI 

should be prioritized to scale practical, cost-effective solutions. As major investment has 
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gone into developing frontier models, equal ambition must now be directed toward building 

resource-conscious systems that are accessible, efficient, and tailored for real-world use, 

especially in underserved settings. 

 

b. Incentivize transparency and eco-conscious innovation across the AI ecosystem. 

Encourage more eco-conscious design and usage by establishing clear incentives, 

sustainability standards, and public procurement criteria that reward resource-efficient AI, 

particularly at the inference stage, where energy usage is most frequent and scalable. Like 

energy labels on appliances, visible indicators, such as efficiency ratings or environmental 

impact disclosures, can help users make informed choices and motivate developers to 

innovate toward sustainability. Developers and operators should also commit to transparent 

reporting of energy use, carbon emissions, and water consumption. Regulatory frameworks 

and independent audits can help ensure accountability and drive continuous improvement, 

making sustainability a foundational principle of AI innovation. 

 

c. Promoting AI literacy is essential. Supporting education initiatives that increase user 

understanding of AI interaction and engagement while raising awareness of the 

environmental costs of generative AI can empower policymaking, decision-making and 

promote eco-conscious usage of these technologies.  AI literacy initiatives include fostering 

critical thinking on AI’s benefits and risks, integrating sustainability and green principles into 

AI literacy curricula, and equipping policymakers, developers, and consumers with the 

knowledge and guidance on sustainable AI usage and engagement. 
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Artificial intelligence (AI) is a double-edged sword in environmental sustainability. 

Artificial Intelligence (AI) has undergone a remarkable transformation over the past decade, 

transitioning from specialized applications to becoming a cornerstone of modern life, significantly 

affecting our digital interactions. Its ability to process vast amounts of data, recognize patterns, and 

make intelligent decisions has unlocked new possibilities across industries, including fostering 

sustainability strategies in several sectors of our economies. Today, AI powers tools ranging from voice 

assistants, chatbots, fraud detection, personalized educational platforms, language translation to 

advanced medical diagnostics, revolutionizing the way we live and work.  

However, this rapid expansion comes with a complex relationship with the environment. On one side, 

AI shows immense potential to address global challenges, particularly in advancing climate change 

solutions on adaptation and mitigation. Much of these applications are in predictive AI tools, which 

use historical data to forecast future events or trends. For instance, predictive AI enables precision 

agriculture by analyzing weather patterns and soil conditions to optimize crop yields. It helps monitor 

deforestation through satellite imagery, predict the impacts of climate change, and optimize energy 

grids by forecasting demand and supply14.  

On the other side, the recent explosion of generative AI, a type of AI that creates new content, such 

as text, images, videos or music, often requires significant computational power and consumes 

substantial resources, including energy and water, for cooling the data centers that power these 

models. At the core of generative AI applications are large language models (LLMs), a subset of AI 

systems designed to understand and generate human-like text. LLMs are trained on vast datasets 

containing billions of sentences, requiring immense computational resources and energy. Notable 

advancements include BERT (by Google, 2018) and GPT-3 (by OpenAI, 2020), LLaMA (Meta, 2023), 

Claude (Anthropic, 2023), and Gemini 1.5 (Google DeepMind, 2024), which have revolutionized 

natural language processing and made it easier for machines to understand and generate human-like 

text. 

The use of generative AI is set to grow exponentially as more companies, governments and 

organizations adopt it to drive efficiency and productivity. There are many use cases, spanning a vast 

number of areas of domestic and work life. The use of this technology is as wide-ranging as the 
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problems we encounter in our lives, including content creation, learning and education, technical 

assistance and troubleshooting, research and analysis, and hobbies, to name a few15. 

 

This duality positions AI as both a powerful ally and a potential adversary in the fight for a 

sustainable future. The environmental demands of AI, particularly generative AI, exacerbate resource 

consumption, deepening global inequalities, especially between regions with abundant computing 

power and data and those with limited access. As this study will show, addressing these challenges 

requires reconciling the growing ubiquity of AI with its resource-intensive nature. 

To address the environmental impact of AI, industry and the scientific community are pursuing a range 

of innovative solutions under the umbrella of resource-efficient and green compute strategies. 

Solutions include efforts to improve the efficiency of AI models through optimizing hardware, 

improving algorithms, and considering renewable energy sources to offset their carbon footprint. 

Advances in energy-efficient chips, data center cooling techniques, and software optimization may 

also help reduce energy demand over time. 

It is imperative to recognize the environmental cost of our daily digital interactions. While each 

individual search or prompt might seem negligible, collectively, they contribute to significant energy 

use and carbon emissions. To fully understand and address these impacts, it’s essential to examine 

each phase of the AI system lifecycle–from inception to retirement–where different sustainability 

challenges and opportunities arise. 
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The AI System Lifecyle: Each stage contributes to the environmental footprint 

The AI System Lifecycle16 outlines the key stages involved in developing, deploying, and maintaining 

an AI system, ensuring its effectiveness, reliability, and adaptability over time. 

It begins with Inception, where the problem is defined, objectives are set, and feasibility is assessed. 

This is followed by Design and Development, where engineers select appropriate algorithms, collect 

and prepare data, and build the AI model. The system then undergoes Verification and Validation, a 

critical phase of rigorous testing to ensure accuracy, fairness, and robustness before deployment. In 

the Deployment stage, the AI model transitions into real-world use, processing new data and 

generating insights. However, the lifecycle does not end there; Operation and Monitoring is essential 

to track system performance, detect potential issues, and implement necessary adjustments. Over 

time, Re-validation is conducted to reassess the model’s effectiveness, particularly as data patterns 

evolve. Eventually, when an AI system becomes outdated or no longer meets requirements, it reaches 

the Retirement stage, where it is decommissioned or replaced. 

Throughout this lifecycle, two key processes ensure continuous improvement: Training, which spans 

from design to deployment, enabling the model to learn from data, and Inference, which allows the 

system to generate predictions in real-world scenarios. Additionally, Continuous Validation plays a 

crucial role in maintaining accuracy and reliability through iterative feedback loops and ongoing 

refinement. This structured approach ensures that AI systems remain aligned with ethical, regulatory, 

and performance standards, supporting responsible AI development. 

THE AI LIFECYCLE 
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Energy-efficient Computing: Focusing on AI Inference to drive efficiency and accessibility. 

AI Inference, or interacting with the model, is becoming the largest cumulative energy footprint 

over the model’s lifecycle. While training is the most energy-intensive stage on a per-event basis, the 

cumulative energy impact of inference often surpasses it over a model’s lifecycle. Training involves 

processing massive datasets and running complex computations on high-performance hardware, 

consuming significant resources in a relatively concentrated timeframe. However, once the model is 

deployed, inference occurs repeatedly, potentially billions or even trillions of times, as the model is 

used by applications serving large user bases. Each individual inference requires less energy than 

training, but the sheer scale of usage, coupled with the need for continuous operation across global 

data centers, can result in a far greater overall energy footprint.  

As the growing ubiquity of Generative AI is fueling environmental strain, it is crucial to address 

inference. As AI tools become deeply embedded in consumer devices, from chatbots like ChatGPT and 

Claude to AI-powered search engines such as Google AI Overview and advanced business tools like 

Microsoft 365 Copilot – AI is increasingly “one button away”, making usage almost inevitable. For 

example, Open AI has reported that more than 500 million people use ChatGPT each week17 with 92% 

of Fortune 500 companies using OpenAI’s product18. However, most research to date has focused on 

the computational intensity of the development processes of AI models, and the exploration of usage 

is still in early stages.  

This section explores the energy demands associated with AI inference and outlines accessible 

computing strategies that can substantially reduce environmental impact without compromising 

accuracy or performance. To enable empirical testing, the analysis required an open-source model 

capable of being run locally on independent hardware. This excluded proprietary, closed-source 

systems such as ChatGPT (OpenAI), Claude (Anthropic), and Gemini (Google DeepMind), which are not 

publicly accessible. The model selected for experimentation was LLaMA 3.1 8B Instruct, developed by 

Meta AI. LLaMA 3.1 8B is one of the most widely adopted and accessible open-source models due to 

its suitability for a range of optimization tests. A selection of additional open-source small models was 

also included (listed in the Appendix). As the scale of AI technologies continues to expand, enhancing 

energy efficiency is not only an environmental priority but also critical for ensuring equitable access 

to AI in underserved settings. 
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AI 

https://build.nvidia.com/meta/llama-3_1-8b-instruct


 
 

13 
 

The journey of a single prompt 

To fully grasp the energy and resource consumption involved in using Large Language Models 

(LLMs), it is essential first to map out and understand the journey of a user's request. This journey 

encompasses all the steps taken from the moment the user sends their query to the final response 

generated by the LLM. It starts with the user prompt, which is the text entered by the user. The system 

then moves through several stages: 

1. Prompt Processing: The input is interpreted and prepared for the next steps. 

2. Tokenization: The prompt is broken down into smaller units called tokens, which the 

model can understand and process. 

3. Model Inference: The LLM uses its trained parameters (aka model weights) to analyze the 

tokens and generate a response by predicting the next word or phrase. 

4. Post-Processing and Delivery: The raw output is formatted, refined, and sent back to the 

user in a readable form as the LLM response. 

 

While users only see the 

immediate interaction–typing 

a question and receiving a 

response–the underlying 

process relies on a vast and 

complex infrastructure. This 

includes extracting raw 

materials like rare earth 

metals, manufacturing 

components such as graphics 

processing units (GPUs), 

constructing data centers, and 

maintaining power and cooling 

systems. Each stage, from the 

mining of natural resources to 

the delivery of the final 

product, requires energy, 

water, and other resources. 

 

When users query most AI models–whether through mobile apps or web interfaces–what happens 

behind the scenes remains largely opaque. Key factors such as which data center handles the request, 

how much energy is consumed in the process, and the carbon intensity of the energy sources involved 

are typically known only to the companies operating the models. 
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Reducing energy expenditure of AI use can 

be achieved by optimizing the entire prompt 

journey, from input formulation to output 

generation. Techniques like simplifying 

prompts, using concise inputs, and 

managing LLM response length help reduce 

tokenization and processing overhead. 

During inference, methods like quantization 

(e.g., integer format weights) and dynamic 

scaling (using smaller models for simpler 

tasks) significantly lower energy use. Post-

inference strategies, such as refining 

outputs incrementally and leveraging prior 

responses, further minimize redundant 

computations. These approaches ensure 

efficiency and sustainability without 

compromising user experience.  

 

 

The following section explores some of these actionable strategies that can be applied to reduce 

energy costs. The experiments were conducted using open-source models and tools, with the full list 

and further details on the methodology and data provided in the Appendix. 

Energy-efficient Compute Strategy 1: As more compute means energy usage, simplifying and 

optimizing LLM computations can achieve energy savings.  

LLMs generate responses by processing vast amounts of data through interconnected layers of 

"neurons," much like a brain. These neurons communicate using numbers (called "weights") that 

determine how the model learns and responds. Optimizing these weights can improve energy 

efficiency without greatly affecting performance. Experiments were done on Meta AI's LLaMA 3.1 8B 

Instruct, a state of the art language model designed for summarizing, translating, and answering 

questions. With 8 billion parameters, it is a large language model adept at handling complex inputs, 

such as summarizing long documents or answering detailed questions. 

ENERGY-EFFICIENT AI EXPERIMENTS 
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To measure efficiency and performance, the model was tested on three tasks: 

1. Summarization (e.g., condensing BBC articles into summaries). 

2. Translation (e.g., English to Hindi). 

3. Question Answering (e.g., answering questions from science textbooks). 

The Appendix shows a few examples of the tasks. The energy consumption was evaluated using 

CodeCarbon, an open-source tool designed to estimate the carbon emissions associated with 

computational processes by monitoring power usage, hardware specifications, and the carbon 

intensity of the energy grid. Performance was assessed using BERTScore, a metric that measures the 

semantic similarity between model-generated text and human-written answers. BERTScore leverages 

a pre-trained language model (BERT) to evaluate the meaning and context of the text beyond exact 

word matches. Together, these tools provided a comprehensive assessment of both environmental 

impact and task performance. 

 

https://mlco2.github.io/codecarbon/
https://dblp.org/rec/conf/iclr/ZhangKWWA20.html
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Energy-efficient Technique: Quantization 

Quantization is a technique that reduces the precision of numbers used by machine learning models, 

thereby accelerating computations and reducing energy consumption. This process can be likened to 

rounding values, such as reducing 8.01 to 8 or 4.23 to 4, to simplify mathematical operations. 

Although quantization leads to lower energy consumption, it may also impact the accuracy of the 

model. To strike a balance between energy savings and performance, three distinct techniques were 

tested (more details can be found in the Appendix): 

 

1. Bits and Bytes Quantization 

(BNBQ): This method employs low 

precision (4 bits) for all model 

weights, potentially sacrificing 

accuracy on larger numbers. 

2. Generalized Post-Training 

Quantization (GPTQ): This 

technique adjusts the precision 

across the model, preserving 

essential information to maintain 

overall accuracy. 

3. Activation Aware 

Quantization (AWQ): This 

approach prioritizes high 

precision for critical model 

components, while reducing 

precision for less important parts. 

 

 

Results: Reduced Energy Consumption with Maintained Accuracy 

Quantization resulted in significant energy savings while preserving model accuracy: 

● BNBQ: Achieved a 22% reduction in energy consumption. 

● GPTQ: Led to a 35% reduction in energy consumption. 

● AWQ: Delivered a 44% reduction in energy consumption and even outperformed the 

unquantized model on certain tasks. 

While question answering requires more energy than more complex tasks such as summarization or 

translation, the energy savings with quantisation were similar across all tasks. 
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Energy-efficient Compute Strategy 2: Optimizing User Prompt and LLM Response Lengths 

Energy efficiency during 

inference is significantly 

influenced by the length 

of both the user prompt 

and the LLM response. 

Longer inputs and 

outputs require more 

tokens to be processed 

and stored, which 

increases energy 

consumption. Tokens are 

the digital 

representations of words 

or parts of words, and 

tokenization allows 

models to handle various 

languages and new 

words effectively by 

breaking down text into smaller, reusable units. 

User Prompt Length: The energy consumption during inference is directly impacted by the length of 

the user input prompt. For example, a short prompt like “Summarize this article” (3 tokens) requires 

minimal energy, whereas a longer prompt, such as “Here is a detailed article about climate change 

impacts, including specific data points and historical context. Summarize it in five key points” (27 

tokens), demands more computation. The model must encode and analyze the additional tokens, 

resulting in higher energy use. 

LLM Response Length: The length of the LLM response also significantly affects energy consumption. 

For instance, a concise response like “Climate change impacts include rising temperatures, sea levels, 

and extreme weather” (11 tokens) requires fewer computations compared to a detailed explanation 

like “Climate change affects the planet by causing rising temperatures, increasing sea levels, and 

leading to more frequent extreme weather events such as hurricanes and droughts, which disrupt 

ecosystems and human societies” (36 tokens). Each additional token requires the model to process all 

previously generated tokens to predict the next one, further increasing energy demands. 

Energy Consumption Analysis: Energy consumption (in kWh) was measured for 1,000 prompts across 

various combinations of input and output lengths, expressed in tokens ranging from 128 tokens 

(approximately 110 words in English) to 1024 tokens (approximately 850 words or 8 paragraphs). 

Language differences also play a role, as languages like European languages, Arabic, and Hindi use 1.2–

1.5 tokens per word, whereas languages like Chinese, Japanese, and Korean require 1.5–2 tokens per 

character. These variations significantly impact the computational resources needed for different 

languages. 

The results show that using a longer user prompt (400 words) and receiving a longer LLM response 

(400 words) spends the most energy (orange bars). Halving the user prompt length to 200 words 
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reduces the energy expenditure by 5%. On the other hand, halving the LLM response length to 200 

words (dark blue bars) reduces energy consumption by 54% (see Appendix for the data). With each 

further reduction of the user prompt and LLM output length, the energy saving is further 

compounded.  

Notably, the length of the LLM response has a far greater impact on energy consumption than the 

user input prompt length. This emphasizes the importance of strategies to reduce response length, 

which can substantially lower energy demands. Some practical approaches to streamline responses 

include: 

1. Adopt and Mainstream Innovative Solutions: Emerging technologies, such as prompt 

compression tools, present effective strategies for enhancing AI efficiency. Research institutes 

and AI accelerators are developing prompt compression tools that streamline AI workflows. 

These tools can reduce input size to AI models, decrease response time and costs without 

compromising output quality. Integrating such technologies can significantly improve the 

energy efficiency of LLMs while maintaining performance standards. 

2. Promote User Awareness and AI Literacy: Increasing user awareness of the energy 

consumption associated with prolonged interactions with AI models, such as chatbots and 

companions, is critical. Extended dialogues can result in considerable energy expenditure, yet 

many users remain unaware of this impact. Educating users on the environmental implications 

of their interactions with AI systems, and encouraging concise engagements, will help mitigate 

unnecessary energy consumption. Raising awareness will be essential as AI technologies 

continue to expand across various applications. 

Energy-efficient Compute Strategy 3: Small Language Models (SLMs) vs. Large General-Purpose 

Models 

Model size plays a critical role in balancing computational efficiency, energy consumption, and 

accuracy. A key strategy for optimizing these factors involves replacing large, general-purpose large 

language models (LLMs) with smaller, fine-tuned models that are specifically optimized for designated 

tasks. Fine-tuning adapts a pre-trained model using domain-specific datasets, tailoring it for particular 

applications such as legal document analysis or medical diagnosis. While these smaller models may 

not match the broad capabilities of larger LLMs, they excel in targeted applications, significantly 

reducing both computational and energy costs. This approach proves to be particularly effective in 

low-resource environments where computational efficiency is a priority. 

In this experiment, a comparison was made between the unquantized (original) LLaMA model and 

task-specific models that had been fine-tuned for each respective task. The task-specific models were 

selected based on their relevance to common applications and their popularity within the Hugging 

Face community, ensuring that the evaluation reflected models that are widely recognized and used.  

The fine-tuned models were evaluated on two types of datasets: in-context (an extension of the 

dataset used for fine-tuning) and out-of-context (a slightly varied dataset that tested the same task 

but introduced some differences). This comparison aimed to determine whether specialized models 

could deliver higher performance and greater energy efficiency than a larger, general-purpose model. 

The results, as shown in the figure below, indicate that task-specific models significantly outperform 

the general-purpose LLaMA model when tested on their fine-tuned datasets. These specialized 
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models consumed between 15 to 50 times less energy while producing higher-quality outputs on 

the in-context datasets. These findings have major implications for low-resource settings, where 

smaller models, delivering similar or even better performance than larger models, are more viable and 

cost-effective for smaller infrastructures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the performance of the smaller models decreased when applied to unfamiliar datasets, 

highlighting the trade-off between task-specific optimization and generalization. Additionally, they 

were found to be less suitable for applications that require multi-tasking capabilities. 

The optimal approach involves combining smaller models for well-defined tasks with available fine-

tuning data, especially by leveraging the growing ecosystem of open-source AI. Platforms like 

Hugging Face, Replicate, and Mistral offer pre-trained models and collaborative tools that empower 

developers to build efficient, tailored solutions without starting from scratch. This open-source 

movement is central to enabling more resource-conscious innovation, accelerating access, and 

fostering transparency across the AI ecosystem. 

This strategy demonstrates that smaller, fine-tuned models can provide significant energy and 

performance benefits for specific applications, particularly in low-resource settings. However, 

limitations in generalization and multi-tasking should be considered. A balanced approach, leveraging 

small task-specific models, a “collection of small models” approach, and large general-purpose models 

when necessary, will offer the best optimization for energy and performance. 
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Translating green compute strategies into relatable energy consumption units 

Impact of LLM Optimization on Energy Consumption in Relatable Units 

Putting the energy-efficient compute strategies into practice, this part focuses on translating the 

energy consumption of LLMs into familiar and relatable units to underscore the potential impact of 

optimization. This combines findings from the energy consumption of the LLaMa model, as outlined 

in Strategies 1-3, with global usage statistics for ChatGPT, at the time this brief was written the most 

widely used LLM-based chatbot. This approach bridges experimental results with real-world scenarios, 

illustrating both the consequences of inefficient LLM usage and how optimization can yield significant 

energy savings in easily understandable terms. 

For the purposes of this analysis, the “concept explanation” task was selected, where a user requests 

an LLM to explain a specific concept. This task represents nearly 35% of user queries. The following 

input prompt was used: “Explain the concept of reinforcement learning, emphasizing its core 

principles, components (like agents, environments, and rewards), and typical applications. Keep the 

explanation accessible to someone with basic knowledge of artificial intelligence.” This prompt was 

designed to assess the model's factual knowledge and ability to follow instructions. 

Energy consumption was then calculated for a single LLM model response to this question using the 

Lllama model described earlier. This figure was multiplied by the number of daily user prompts for 

concept explanation queries. Based on global usage statistics for ChatGPT, which shows approximately 

1 billion daily requests, and assuming 35% of these to be concept explanations, we get a total number 

of requests of this type to be 350 million. This allowed for the estimation of total daily energy 

consumption for concept explanation tasks globally. 

The findings, illustrated in the next figure, demonstrate the energy savings across various optimization 

scenarios. Reducing the LLM response from 400 tokens (roughly 300 words) to 200 tokens 

(approximately 150 words) could save enough electricity to power approximately 20,000 average UK 

households per day (assuming 7.4 kilowatt-hours per household per day 19. Furthermore, using a 

quantized model yields similar results, saving the equivalent of an additional 10,000 households’ 

worth of electricity.  

When both strategies–quantized models and reduced response lengths–are combined, the energy 

savings are compounded, reducing energy expenditure by up to 75%, equating to approximately 

30,000 U.K. households per day. 

https://advocacy.consumerreports.org/wp-content/uploads/2024/01/CR-Report_AI-chatbot-surveys_1.31.24-1.pdf
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Interestingly, the use of smaller models yields the largest energy savings. Even without reducing 

response length, smaller models save more energy than the combined approach above. When 

response length is also reduced, the energy consumption drops to fewer than 4,000 households, 

representing a 90% reduction from the original 38,000 households.  

 

However, it is important to note that while smaller models outperform larger ones for specific tasks, 

they may not perform as well for general-purpose applications. As such, optimizing model size 

requires careful consideration to maintain output quality.  

These findings reinforce that sustainability does not always require sacrificing performance. With 

smart design choices, AI can become dramatically more efficient. 
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New Frontiers in Efficient AI: New Architectural Strategies  

Beyond individual tweaks, new architectural strategies are emerging that rethink how generative AI 

models are structured. 

One promising direction is the Mixture of Experts (MoE) approach. Rather than relying on a single 

model to handle every task, MoE systems activate only a few specialised small models, or “experts,” 

for each query. This targeted use of compute avoids unnecessary energy use and allows for scale 

without a proportional increase in cost - much like consulting just the right expert instead of convening 

an entire panel for every question. Multi-agent systems offer another compelling strategy. In these 

architectures, multiple smaller models, each with distinct capabilities, work together to solve complex 

tasks. Inspired by human collaboration, this approach enables more flexible and modular AI systems 

that can be tailored to specific domains or responsibilities. 

A third strategy gaining traction is sparse and conditional computation, where models learn to 

activate only the components needed for a particular input. These architectures, such as sparse 

transformers and early-exit models, can significantly reduce computational waste while maintaining 

high performance. In parallel, retrieval-augmented generation (RAG) provides a way to combine 

small generative models with search and memory. Instead of trying to store all knowledge within the 

model itself, RAG systems retrieve relevant external information on demand—enabling more accurate 

and efficient responses without massive parameter counts. 

Finally, neurosymbolic and brain-inspired architectures are being explored as long-term solutions. 

These systems integrate symbolic reasoning with neural networks or take cues from the brain’s 

energy-efficient mechanisms, such as spiking neurons or event-driven processing. Though still in their 

early stages, they open new possibilities for interpretable, low-power AI. 

These emerging approaches hold great promise, though many remain under active development. 

Mixture of Experts systems must be carefully calibrated to ensure that expert models are used 

efficiently. Multi-agent architectures face challenges related to coordination, communication, and 

system stability. Sparse models, RAG techniques, and brain-inspired designs require further progress 

in infrastructure, scalability, and integration into real-world applications. 

To move these ideas from lab experiments to practical deployment, sustained investment will be 

critical—along with robust evaluation standards and ecosystem support. When mature, these 

FUTURE OF GEN AI: Smaller, Smarter, Stronger 
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architectural innovations promise a new generation of AI systems that are not only highly capable and 

intelligent, but also efficient and sustainable by design. 

Recent research from NVIDIA on small language models20 further underscores growing industry 

momentum behind modular, energy-aware AI systems capable of efficient reasoning and 

collaboration. Such innovations reflect a broader shift toward performance-optimized AI that doesn’t 

come at the expense of sustainability. 

RECOMMENDATIONS  
To address the urgent resource-efficiency and accessibility challenges posed by Generative AI, we 

propose the following three main recommendations, accompanied by targeted actions for 

policymakers, the technology sector, and end users: 

1. Mobilize innovation to advance resource-efficient, “clean by design” AI systems 

Bold public and private investment are essential to accelerate the development and deployment of AI 

systems that are sustainable by design. This includes channeling support toward innovations that 

improve both energy and resource efficiency throughout the AI lifecycle, from training to inference. 

Prioritizing "clean by design" approaches ensures that efficiency and sustainability are not add-ons, 

but foundational design principles. 

Improving both energy and cost efficiency in AI inference operations is vital to ensuring the 

accessibility of generative AI, particularly for underserved communities. 

● Policymakers should: 

o Establish national R&D funding programs to support research into energy-efficient AI 

techniques, such as model compression, quantization, and inference optimization. 

These should level the playing field between academia, startups, and large industry 

players. 

o Establish targeted funding & incentives: Provide grants or tax relief for energy-

efficient AI solutions to encourage their adoption. Similar to clean energy subsidies, 

targeted incentives can help bridge the gap between traditional AI deployments and 

greener alternatives. 

o Public Procurement: Governments could lead by example by adopting (and 

requiring) low-carbon AI systems in public services. This signals the viability of such 

solutions and validates them for industry use.   

o Standards & Regulatory Clarity: Establish benchmarks or guidelines around AI energy 

usage. Clear criteria can encourage responsible innovation whilst maintaining a level 

playing field.   

o Mandate environmental risk assessments for the development and deployment of 

AI systems, particularly large-scale or high-energy models. These assessments 

should evaluate impacts on electricity grids, water usage, and emissions, especially 

in regions with fragile infrastructures or scarce resources. 
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o Require companies to publicly disclose environmental risk assessments as part of AI 

model approval, similar to impact assessments required in other high-risk sectors 

(e.g., construction or energy). 

o Collaborate with international bodies to create and promote global benchmarks for 

energy-efficient AI. 

● AI Developers and the Technology Industry should: 

o Proof of Concept & Pilot Programmes: Enterprises can start small by testing efficiency 

tools in isolated pilots before rolling them out widely. Positive results in cost and 

performance provide a compelling case for larger investment.  This includes 

integrating energy-efficient techniques, such as model optimization, quantization, 

and task-specific model development, as standard practices. 

o Advance open-source sustainability frameworks: Support initiatives such as Hugging 

Face’s Reduce, Reuse, Recycle and Energy Score efforts to promote transparent 

benchmarking, shared tools, and procurement standards for sustainable AI 

development. 

o Design and implement low-energy inference modes (e.g., “Eco Modes”) for common 

AI tasks. 

o Collaboration with Start-ups: Large AI companies or cloud providers might partner 

with emerging start-ups to integrate next-generation efficiency features, speeding up 

mainstream adoption. 

o Open Knowledge-Sharing: Contribute to open-source libraries or best-practice guides 

on AI inference optimization. This fosters a community-driven approach and 

accelerates innovation across the board.   

o Conduct and publish environmental risk assessments before launching new models or 

infrastructure expansions (e.g., large data centers, major model updates). These 

assessments should cover energy intensity, water usage, emissions impact, and 

mitigation strategies. 

o Develop internal governance mechanisms to systematically assess and reduce 

environmental risks in product roadmaps and model iteration cycles. 

● General Users should: 

o Support AI platforms that explicitly commit to energy-efficient practices. 

o Support research and advocacy efforts focused on making AI systems more 

sustainable and accessible. 

o Use AI tools judiciously by selecting smaller, task-specific models or tools that align 

with sustainable practices. 
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2. Incentivize transparency and eco-conscious innovation across the AI ecosystem 

Transparency and accountability must become central to how AI is designed, deployed, and used. 

Clear sustainability incentives, visibility mechanisms, and procurement guidelines can drive more 

responsible behavior across the ecosystem, from model developers to end users. 

● Policymakers should: 

o Create procurement standards that incentivize and reward sustainable-by-design 

models, especially in public sector adoption of generative AI tools. 

o Develop regulatory frameworks that require the disclosure of environmental metrics 

on energy usage, carbon emissions, and water consumption by AI providers. 

o Mandate standardized reporting formats for environmental performance data to 

ensure comparability and foster informed public and private sector decision-making. 

o Incentivize eco-conscious innovation via certifications, labeling systems (akin to 

appliance efficiency ratings), and tax incentives for sustainable AI. 

● AI Developers and the Technology Industry should: 

o Transparently report the environmental footprint of their models and infrastructure, 

including inference-level energy use, water demand, and emissions. 

o Adopt sustainability scoring mechanisms (e.g., AI energy performance scores) that 

reflect real-time model efficiency across common tasks. These scores can support 

institutional procurement, compliance monitoring, and user awareness. 

o Publish supporting documentation that allows external reviewers to verify and 

replicate energy usage claims under reproducible test conditions. 

o Optimize data centers and AI pipelines for energy efficiency, and integrate renewable 

energy sources wherever feasible. 

o Embed eco-conscious design choices into development workflows, including 

quantization, sparsity, and modular inference approaches. 

● General Users should: 

o Favor AI tools and platforms that are transparent about their environmental impact, 

including energy and resource use, and that clearly disclose sustainability practices. 

o Choose lightweight, purpose-built models over large general-purpose ones when 

practical, especially for routine tasks. 

o Look for models or applications that display sustainability labels, efficiency scores, or 

metrics aligned with public benchmarks. 

o Support platforms and services that embed eco-conscious design principles–such as 

quantization, sparsity, and modular inference–and prioritize sustainability as a core 

value. 
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3. Promote AI Literacy and Awareness of Generative AI’s Environmental Costs 

Education initiatives that highlight both the capabilities and environmental costs of Generative AI are 

critical to fostering informed decision-making. 

● Policymakers should: 

o When setting standards, developing national policies and educational curriculum on 

AI, governments should support the integration AI information literacy to advance 

critical thinking of citizens and foster user empowerment. Policies should guarantee 

the training of citizens of all ages to understand AI (for e.g. information search 

techniques) and critically engage with Gen AI tools, including by raising awareness of 

its environmental and social impacts 

o Fund public awareness campaigns that explain the energy and resource costs of AI 

operations and encourage sustainable AI usage. 

o Collaborate with AI developers, researchers, and educators to create inclusive and 

accessible educational materials tailored to diverse audiences. 

● AI Developers and the Technology Industry should: 

o Prioritize transparency and explainability in the development and deployment of 

generative AI tools, disclosing data on environmental impact, resource consumption, 

fairness, and safety. 

o Provide user-friendly transparency reports on the environmental impacts of their 

models, including energy consumption and carbon emissions per query. 

o Develop tools or dashboards to help users visualize the environmental impact of their 

interactions with AI systems. 

o Partner with educational institutions to create accessible AI training materials, 

focusing on sustainability and ethical use. 

● General Users should: 

o Learn about the environmental impact of AI and use this knowledge to make informed 

choices about platform selection and usage patterns. 

o Engage with educational resources, workshops, or online courses on AI literacy and 

sustainability. 

o Advocate for sustainable AI by supporting companies that prioritize transparency and 

green practices. 
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Tackling the resource demands of generative AI requires more than incremental fixes, it calls for a 

shift in how we design, deploy, and govern AI technologies. By addressing critical areas such as energy 

efficiency in AI inference, advancing AI literacy, and fostering greater transparency, we can begin to 

mitigate the environmental and accessibility challenges posed by today’s AI systems. 

A new paradigm is needed–one that prioritizes sustainable by design innovation, embedding 

efficiency, inclusivity, and environmental responsibility at the core of AI development. This means 

accelerating the deployment of smarter, more resource-conscious AI systems, particularly at the 

inference stage where the bulk of energy use occurs. It also means empowering users, policymakers, 

and developers alike through education, open information, and clear sustainability benchmarks. 

Such transformation will require coordinated, cross-sectoral collaboration. Governments, technology 

developers, research institutions, and end-users each have a vital role to play in building an AI 

ecosystem that is not only powerful but also sustainable, equitable, and responsive to global 

challenges. 

As part of its continued commitment to responsible AI, UNESCO will champion the adoption of energy- 

and resource-efficient AI solutions–such as small language models, agentic AI, frugal AI, and edge 

computing–as core enablers of sustainable digital transformation. Working in partnership with the 

scientific and technology communities, UNESCO will help develop practical policy tools and technical 

guidance to support low-resource environments, ensuring that innovation remains both inclusive and 

ecologically sound. 

By steering AI toward a cleaner, leaner, and fairer future, we can unlock its full potential–not just for 

technological progress, but for the shared sustainability and resilience of our societies. 
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APPENDIX 
A.1 

Task  Model  Developer 

Model 
Size  

(GB)  

Model 
Parameters  

(millions)  

All  Llama-3.1-8B-Instruct  Meta Llama 16.06  8,030  

All  Llama-3.1-8B-Instruct-BNB Hugging Quants 5.59  8,030  

All  Llama-3.1-8B-Instruct-GPTQ Hugging Quants 5.74  8,030  

All  Llama-3.1-8B-Instruct-AWQ Hugging Quants 5.86  8,030  

Summarisation  pegasus-xsum  Google 2.28  570  

Summarisation  bart-large-xsum  AI at Meta 1.63  406  

Summarisation  distilbart-xsum-12-6  AI at Meta / Sam Shleifer 1.22  306  

Summarisation  t5-small-xsum  Google T5 / Abhijit Das 0.24  61  

Translation  opus-mt-en-es 

Language Technology 
Research Group at the 
University of Helsinki 
(Helsinki NLP) 

0.31 78 

Translation  opus-mt-es-en 0.31 78 

Translation  opus-mt-en-zh 0.31 78 

Translation  opus-mt-zh-en 0.31 78 

Translation  opus-mt-en-hi 0.31 76 

Translation  opus-mt-hi-en 0.31 76 

Translation  opus-mt-en-uk 0.30 76 

Translation  opus-mt-uk-en 0.30 76 

Question Answering  
bert-large-uncased-whole-word-
masking-finetuned-squad 

Google BERT 
1.34  335  

Question Answering  
bert-large-uncased-whole-word-
masking-squad2 

Google BERT 
1.34  335  

Question Answering  mdeberta-v3-base-squad2 Microsoft / Tim Isbister 1.11  278  

Question Answering  roberta-base-squad2 Facebook AI / Deepset 0.50  125  

Question Answering  electra-base-squad2 Facebook AI / Deepset 0.44    

Question Answering  tinyroberta-squad2 Facebook AI / Deepset 0.33  82  

Question Answering  
distilbert-base-uncased-distilled-
squad  

HuggingFace 
0.27  66  

Question Answering  distilbert-base-cased-distilled-squad  HuggingFace 0.26  65 

https://doi.org/10.48550/arXiv.2506.02153
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A.2 

Feature BNBQ GPTQ AWQ 

Precision 
4-bit weights,  
16-bit activations 

4-bit weights,  
16-bit activations 

Mixed precision: higher precision for critical 

weights, lower for others 

Adaptability Static 4-bit quantisation 
Layer-specific dynamic 

quantisation 

Importance-aware quantisation based on 

activation impact 

Focus 
Compact storage,  
energy efficiency 

Accuracy preservation, task-

specific 

Balancing performance and efficiency by 

prioritising critical components 

Retraining Not required 
No retraining, but more task-

specific 

Not required but uses activation data for fine-

tuning decisions 

Ideal Use 

Case 
General-purpose, storage-

constrained 

High-precision tasks with 

complex needs 

Optimising energy efficiency while maintaining 

performance for critical tasks 

 

A.3 

All experiments were conducted on an NVIDIA GeForce RTX 3090 Ti GPU with 24GB of RAM, 

combined with a 12th Gen Intel Core i9-12900K CPU1 and 128GB of RAM. The Linux operating 

system (version 5.14.0-427.31.1.el9 4.x86 64) provided a stable environment for model execution, 

with Python version 3.10.14 used for managing the experiments. 

 

Effect of quantisation: 

 Unquantised Quantised 

Energy (kWh)/1000 
inferences   BNBQ GPTQ AWQ 

Summarisation 0.122 0.091 0.074 0.066 

Translation 0.112 0.077 0.067 0.056 

Question Answering 0.025 0.023 0.019 0.016 

Accuracy (%)         

Summarisation 70.5 69.5 69.0 71.2 

Translation 84.2 83.8 83.7 81.7 

Question Answering 90.0 89.1 89.9 87.3 
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Effect of model size: 

 Large Model Small Models 

Energy (kWh)/1000 
inferences 

   

Summarisation 0.122 0.008 

Translation 0.112 0.003 

Question Answering 0.025 0.001 

Accuracy (%)     

Summarisation 70.5 74.2 

Translation 84.2 86.6 

Question Answering 90.0 92.7 

 

 

Effect of lengths of user prompt and LLM response: 

 Words 

Energy (kWh)/1000 
inferences 400 200 100 

User Prompt 1.031 0.980 0.955 

LLM Response 1.031 0.476 0.248 

 

 

Impact of optimisation on energy saving: 

 Words Energy (kWh) per inference 

Daily energy usage, 350M 
inferences (MWh) 

Large Model 
300 0.0008 278.5 

150 0.0004 141.0 

Quantised Model 
300 0.00038 133.9 

150 0.00019 65.4 

Small Model 
300 0.00017 60.5 

150 0.00008 29.0 
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A.4 Examples from the task data set (translations, summarizations etc.):  

• XSum: 

o Prompt: 

“They found that targeting a part of the brain called the parietal lobe improved the 

ability of volunteers to solve numerical problems. They hope the discovery could help 

people with dyscalculia, who may struggle with numbers. Another expert said effects 

on other brain functions would need checking. The findings are reported in the journal 

Current Biology. Some studies have suggested that up to one in five people have 

trouble with maths, affecting not just their ability to complete problems but also to 

manage everyday activities such as telling the time and managing money. 

Neuroscientists believe that activity within the parietal lobe plays a crucial role in this 

ability, or the lack of it. When magnetic fields were used in earlier research to disrupt 

electrical activity in this part of the brain, previously numerate volunteers temporarily 

developed discalculia, finding it much harder to solve maths problems. The latest 

research goes a step further, using a one milliamp current to stimulate the parietal 

lobe of a small number of students. The current could not be felt, and had no 

measurable effect on other brain functions. As it was turned on, the volunteers tried 

to learn a puzzle which involved substituting numbers for symbols. Those given the 

current from right to left across the parietal lobe did significantly better when given, 

compared to those who were given no electrical stimulation. The direction of the 

current was important - those given stimulation running in the opposite direction, left 

to right, did markedly worse at these puzzles than those given no current, with their 

ability matching that of an average six-year-old. The effects were not short-lived, 

either. When the volunteers whose performance improved was re-tested six months 

later, the benefits appear to have persisted. There was no wider effect on general 

maths ability in either group, just on the ability to complete the puzzles learned as the 

current was applied. Dr Cohen Kadosh, who led the study, said: "We are not advising 

people to go around giving themselves electric shocks, but we are extremely excited 

by the potential of our findings and are now looking into the underlying brain changes. 

"We've shown before that we can induce dyscalculia, and now it seems we might be 

able to make someone better at maths, so we really want to see if we can help people 

with dyscalculia. By Fergus WalshMedical correspondent, BBC News Read more in 

Fergus's blog "Electrical stimulation is unlikely to turn you into the next Einstein, but 

if we're lucky it might be able to help some people to cope better with maths." Dr 

Christopher Chambers, from the School of Psychology at Cardiff University, said that 

the results were "intriguing", and offered the prospect not just of improving numerical 

skills, but having an impact on a wider range of conditions He said: "The ability to 

tweak activity in parts of the brain, turning it slightly 'up' or 'down' at will, opens the 

door to treating a range of psychiatric and neurological problems, like compulsive 

gambling or visual impairments following stroke." However, he said that the study did 

not prove that the learning of maths skills was improved, just that the volunteers were 

better at linking arbitrary numbers and symbols, and he warned that researchers 

needed to make sure other parts of the brain were unaffected. "This is still an exciting 
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new piece of research, but if we don't know how selective the effects of brain 

stimulation are then we don't know what other brain systems could also be affected, 

either positively or negatively." Sue Flohr, from the British Dyslexia Association, which 

also provides support for people with dyscalculia, said the research was welcome. She 

said: "It's certainly an under-recognised condition, but it can ruin lives. "It makes it 

very hard to do everyday things like shopping or budgeting - you can go into a shop 

and find you've spent your month's money without realising it."” 

o Response: 

“Applying a tiny electrical current to the brain could make you better at learning 

maths, according to Oxford University scientists.” 

• SamSum 

o Prompt:  

“Dialogue: Claire: hey  

Claire: where's this conference about relations at school? 

Aaron: hey 

Aaron: it's in the teaching training thing 

Claire: oh, in Sesame Street? 

Aaron: yeah exactly 

Claire: thanks!  

Claire: are you going? i mean apart from your own lecture ;D 

Aaron: haha yeah i'm giving two, actually 

Aaron: and i'm kind of a host there as well  

Aaron: so guess i'll be looking to coffee, biscuits etc 

Claire: i see 

Aaron: i was thinking i could go to Jo's lecture 

Claire: Jo's... is it the one about stress? 

Aaron: no, that's Joe ;D Jo is having a workshop on teamwork 

Claire: ah, this one. yeah looks interesting 

Aaron: i know her, she's a really good coach 

Claire: i was thinking maybe mindfullness... 

Aaron: yeah definitely!! if you haven't been to any mindfullness workshops then it's 

a must! 

Aaron: i've taken it in Berlin last year, with the same guy 

Aaron: it was amazing, life-changing i'd say 

Claire: sounds wonderful 

Claire: one can easily tell you're one of the organisers ;D 

Aaron: hahah yeah but we did choose the best topics and presenters, believe me :D 

Aaron: we've checked out all those people and learnt from them and yeah, they're 

the best ;) 

Claire: ok ok i'm signing up :D see you there, during the breaks at least;) 

Aaron: ok bye bye;)” 

o Response: “Aaron will give two lectures during the conference about relations at 

school at the Sesame Street. Claire will participate in mindfulness workshop.” 
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• Opus: 
o Prompt: “The general view was that the Assembly should continue this work, 

notwithstanding the fact that efforts made in this area for more than a decade had 
not yielded any tangible results.” 

o Response: “La opinión general es que la Asamblea debería continuar esta labor, a 
pesar de que los esfuerzos realizados en este ámbito durante más de un decenio no 
han producido resultados tangibles.” 

• Flores: 
o Prompt: “Although three people were inside the house when the car impacted it, 

none of them were hurt.” 
o Response: “A pesar de que había tres personas en el interior de la vivienda en el 

momento del impacto del automóvil, ninguna de ellas sufrió lesiones.” 
 

• SciQ: 
o Prompt: “Context: Type 1 diabetes and other autoimmune diseases cannot be 

prevented. But choosing a healthy lifestyle can help prevent type 2 diabetes. Getting 
plenty of exercise, avoiding high-fat foods, and staying at a healthy weight can reduce 
the risk of developing this type of diabetes. This is especially important for people 
who have family members with the disease. 
Question: What disease is unpreventable in the type one form but may be 

prevented by diet if it is of the second type? 

Choices: 1) TB 2) diabetes 3) Cancer 4) Obesity” 

o Response: “diabetes” 

• SQuAD: 
o Prompt: “Context: CBS broadcast Super Bowl 50 in the U.S., and charged an average 

of $5 million for a 30-second commercial during the game. The Super Bowl 50 halftime 
show was headlined by the British rock group Coldplay with special guest performers 
Beyonce and Bruno Mars, who headlined the Super Bowl XLVII and Super Bowl XLVIII 
halftime shows, respectively. It was the third-most watched U.S. broadcast ever. 
Question: Who was the main performer at this year's halftime show?” 

o Response: “Coldplay” 
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